The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Decomposition tree and indecomposable coverings

Andrew BreinerJitender DeogunPierre Ille — 2011

Discussiones Mathematicae Graph Theory

Let G = (V,A) be a directed graph. With any subset X of V is associated the directed subgraph G[X] = (X,A ∩ (X×X)) of G induced by X. A subset X of V is an interval of G provided that for a,b ∈ X and x ∈ V∖X, (a,x) ∈ A if and only if (b,x) ∈ A, and similarly for (x,a) and (x,b). For example ∅, V, and {x}, where x ∈ V, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer k > 0, a directed graph G = (V,A) is called...

Criticality of Switching Classes of Reversible 2-Structures Labeled by an Abelian Group

Houmem BelkhechinePierre IlleRobert E. Woodrow — 2017

Discussiones Mathematicae Graph Theory

Let V be a finite vertex set and let (, +) be a finite abelian group. An -labeled and reversible 2-structure defined on V is a function g : (V × V) (v, v) : v ∈ V → such that for distinct u, v ∈ V, g(u, v) = −g(v, u). The set of -labeled and reversible 2-structures defined on V is denoted by ℒ(V, ). Given g ∈ ℒ(V, ), a subset X of V is a clan of g if for any x, y ∈ X and v ∈ V X, g(x, v) = g(y, v). For example, ∅, V and v (for v ∈ V) are clans of g, called trivial. An element g of ℒ(V, ) is primitive...

Page 1

Download Results (CSV)