The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a model of the shape of a growing polymer introduced by Durrett and Rogers (
(1992) 337–349). We prove their conjecture about the asymptotic behavior of the underlying continuous process
(corresponding to the location of the end of the polymer at time ) for a particular type of repelling interaction function without compact support.
Edge-reinforced random walk (ERRW), introduced by Coppersmith and Diaconis in 1986 [8], is a random process which takes values in the vertex set of a graph and is more likely to cross edges it has visited before. We show that it can be represented in terms of a vertex-reinforced jump process (VRJP) with independent gamma conductances; the VRJP was conceived by Werner and first studied by Davis and Volkov [10, 11], and is a continuous-time process favouring sites with more local time. We calculate,...
Download Results (CSV)