The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let be a closed -manifold, . The critical Kirchhoff systems we consider are written as
for all , where is the Laplace-Beltrami operator, is a -map from into the space of symmetric matrices with real entries, the ’s are the components of , , is the Euclidean norm of , is the critical Sobolev exponent, and we require...
Download Results (CSV)