The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On monochromatic paths and bicolored subdigraphs in arc-colored tournaments

Pietra Delgado-EscalanteHortensia Galeana-Sánchez — 2011

Discussiones Mathematicae Graph Theory

Consider an arc-colored digraph. A set of vertices N is a kernel by monochromatic paths if all pairs of distinct vertices of N have no monochromatic directed path between them and if for every vertex v not in N there exists n ∈ N such that there is a monochromatic directed path from v to n. In this paper we prove different sufficient conditions which imply that an arc-colored tournament has a kernel by monochromatic paths. Our conditions concerns to some subdigraphs of T and its quasimonochromatic...

Kernels and cycles' subdivisions in arc-colored tournaments

Pietra Delgado-EscalanteHortensia Galeana-Sánchez — 2009

Discussiones Mathematicae Graph Theory

Let D be a digraph. D is said to be an m-colored digraph if the arcs of D are colored with m colors. A path P in D is called monochromatic if all of its arcs are colored alike. Let D be an m-colored digraph. A set N ⊆ V(D) is said to be a kernel by monochromatic paths of D if it satisfies the following conditions: a) for every pair of different vertices u,v ∈ N there is no monochromatic directed path between them; and b) for every vertex x ∈ V(D)-N there is a vertex n ∈ N such that there is an xn-monochromatic...

Page 1

Download Results (CSV)