The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that if a group acts properly and cocompactly on a systolic complex, in whose 1-skeleton there is no isometrically embedded copy of the 1-skeleton of an equilaterally triangulated Euclidean plane, then the group is word-hyperbolic. This was conjectured by D. T. Wise.
We classify Veech groups of tame non-compact flat surfaces. In particular we prove that all countable subgroups of ) avoiding the set of mappings of norm less than 1 appear as Veech groups of tame non-compact flat surfaces which are Loch Ness monsters. Conversely, a Veech group of any tame flat surface is either countable, or one of three specific types.
We describe unicorn paths in the arc graph and show that they form 1-slim triangles and are invariant under taking subpaths. We deduce that all arc graphs are 7-hyperbolic. Considering the same paths in the arc and curve graph, this also shows that all curve graphs are 17-hyperbolic, including closed surfaces.
Download Results (CSV)