The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Weichsel (Proc. Amer. Math. Soc. 13 (1962) 47-52) proved that the Kronecker product of two connected bipartite graphs consists of two connected components. A condition on the factor graphs is presented which ensures that such components are isomorphic. It is demonstrated that several familiar and easily constructible graphs are amenable to that condition. A partial converse is proved for the above condition and it is conjectured that the converse is true in general.
Median graphs are characterized among direct products of graphs on at least three vertices. Beside some trivial cases, it is shown that one component of G×P₃ is median if and only if G is a tree in that the distance between any two vertices of degree at least 3 is even. In addition, some partial results considering median graphs of the form G×K₂ are proved, and it is shown that the only nonbipartite quasi-median direct product is K₃×K₃.
Download Results (CSV)