On the number of countable models of stable theories
We prove: Theorem. If T is a countable, complete, stable, first-order theory having an infinite set of constants with different interpretations, then I(T,ℵ₀) ≥ ℵ₀.
We prove: Theorem. If T is a countable, complete, stable, first-order theory having an infinite set of constants with different interpretations, then I(T,ℵ₀) ≥ ℵ₀.
A long-standing conjecture of Podewski states that every minimal field is algebraically closed. Known in positive characteristic, it remains wide open in characteristic zero. We reduce Podewski's conjecture to the (partially) ordered case, and we conjecture that such fields do not exist. We prove the conjecture in case the incomparability relation is transitive (the almost linear case). We also study minimal groups with a (partial) order, and give a complete classification of...
Page 1