The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we investigate Nash equilibrium payoffs for nonzero-sum stochastic differential games with reflection. We obtain an existence theorem and a characterization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined by doubly controlled reflected backward stochastic differential equations.
We prove that if a curve of a nonisotrivial family of abelian varieties over a curve contains infinitely many isogeny orbits of a finitely generated subgroup of a simple abelian variety, then it is either torsion or contained in a fiber. This result fits into the context of the Zilber-Pink conjecture. Moreover, by using the polyhedral reduction theory we give a new proof of a result of Bertrand.
Download Results (CSV)