A unicity theorem for meromorphic functions.
Let f be a transcendental meromorphic function of infinite order on ℂ, let k ∈ ℕ and , where R ≢ 0 is a rational function and P is a polynomial, and let be holomorphic functions on ℂ. If all zeros of f have multiplicity at least k except possibly finitely many, and , then has infinitely many zeros.
Page 1