The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Weighted norm inequalities on spaces of homogeneous type

Qiyu Sun — 1992

Studia Mathematica

We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).

L p ( ) bounds for commutators of convolution operators

Guoen HuQiyu SunXin Wang — 2002

Colloquium Mathematicae

The L p ( ) boundedness is established for commutators generated by BMO(ℝⁿ) functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the L p ( ) boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos-Stefanov condition.

Page 1

Download Results (CSV)