Liouville theorem for harmonic maps with potential.
In this article, we obtain a gap property of energy densities of harmonic maps from a closed Riemannian manifold to a Grassmannian and then, use it to Gaussian maps of some submanifolds to get a gap property of the second fundamental forms.
Dirac-harmonic maps are a mathematical version (with commuting variables only) of the solutions of the field equations of the non-linear supersymmetric sigma model of quantum field theory. We explain this structure, including the appropriate boundary conditions, in a geometric framework. The main results of our paper are concerned with the analytic regularity theory of such Dirac-harmonic maps. We study Dirac-harmonic maps from a Riemannian surface to an arbitrary compact Riemannian manifold. We...
Page 1