Scattering, transformations spectrales et équations d'évolution non linéaires
In this article we study bilinear operators given by inner products of finite vectors of Calderón-Zygmund operators. We find that necessary and sufficient condition for these operators to map products of Hardy spaces into Hardy spaces is to have a certain number of moments vanishing and under this assumption we prove a Hölder-type inequality in the H space context.
Si est une fonction de classe à support compacte et si est un opérateur pseudo-différentiel classique d’ordre 1, l’opérateur est borné sur . Ce résultat se généralise aux commutateurs d’ordre supérieur.
Les racines carrées d’opérateurs différentiels accrétifs ont été définies et étudiées par Kato. Dans le cas d’opérateurs différentiels à coefficients , les racines carrées sont des opérateurs pseudo-différentiels. Le cas des opérateurs différentiels à coefficients mesurables et bornés conduit à des racines carrées au-delà des opérateurs pseudo-différentiels. Ces nouveaux opérateurs s’étudient grâce à des mesures de Carleson.
Page 1