The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Planting Kurepa trees and killing Jech-Кunen trees in a model by using one inaccessible cardinal

Saharon ShelahR. Jin — 1992

Fundamenta Mathematicae

By an ω 1 - tree we mean a tree of power ω 1 and height ω 1 . Under CH and 2 ω 1 > ω 2 we call an ω 1 -tree a Jech-Kunen tree if it has κ-many branches for some κ strictly between ω 1 and 2 ω 1 . In this paper we prove that, assuming the existence of one inaccessible cardinal, (1) it is consistent with CH plus 2 ω 1 > ω 2 that there exist Kurepa trees and there are no Jech-Kunen trees, which answers a question of [Ji2], (2) it is consistent with CH plus 2 ω 1 = ω 4 that there only exist Kurepa trees with ω 3 -many branches, which answers another...

Page 1

Download Results (CSV)