Weighted norm estimates for the maximal operator of the Laguerre functions heat diffusion semigroup
We obtain weighted boundedness, with weights of the type , δ > -1, for the maximal operator of the heat semigroup associated to the Laguerre functions, , when the parameter α is greater than -1. It is proved that when -1 < α < 0, the maximal operator is of strong type (p,p) if p > 1 and 2(1+δ)/(2+α) < p < 2(1+δ)/(-α), and if α ≥ 0 it is of strong type for 1 < p ≤ ∞ and 2(1+δ)/(2+α) < p. The behavior at the end points of the intervals where there is strong type is studied...