The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

A note on integral representation of Feller kernels

R. Rębowski — 1991

Annales Polonici Mathematici

We consider integral representations of Feller probability kernels from a Tikhonov space X into a Hausdorff space Y by continuous functions from X into Y. From the existence of such a representation for every kernel it follows that the space X has to be 0-dimensional. Moreover, both types of representations coincide in the metrizable case when in addition X is compact and Y is complete. It is also proved that the representation of a single kernel is equivalent to the existence of some non-direct...

Most random walks on nilpotent groups are mixing

R. Rębowski — 1992

Annales Polonici Mathematici

Let G be a second countable locally compact nilpotent group. It is shown that for every norm completely mixing (n.c.m.) random walk μ, αμ + (1-α)ν is n.c.m. for 0 < α ≤ 1, ν ∈ P(G). In particular, a generic stochastic convolution operator on G is n.c.m.

Page 1

Download Results (CSV)