The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

End-symmetric continued fractions and quadratic congruences

Barry R. Smith — 2015

Acta Arithmetica

We show that for a fixed integer n ≠ ±2, the congruence x² + nx ± 1 ≡ 0 (mod α) has the solution β with 0 < β < α if and only if α/β has a continued fraction expansion with sequence of quotients having one of a finite number of possible asymmetry types. This generalizes the old theorem that a rational number α/β > 1 in lowest terms has a symmetric continued fraction precisely when β² ≡ ±1(mod α ).

Page 1

Download Results (CSV)