Heuristic methods of construction of sequential questionnaire
Perez’s approximations of probability distributions by dependence structure simplification were introduced in 1970s, much earlier than graphical Markov models. In this paper we will recall these Perez’s models, formalize the notion of a compatible system of elementary simplifications and show the necessary and sufficient conditions a system must fulfill to be compatible. For this we will utilize the apparatus of compositional models.
Efficient computational algorithms are what made graphical Markov models so popular and successful. Similar algorithms can also be developed for computation with compositional models, which form an alternative to graphical Markov models. In this paper we present a theoretical basis as well as a scheme of an algorithm enabling computation of marginals for multidimensional distributions represented in the form of compositional models.
As said by Mareš and Mesiar, necessity of aggregation of complex real inputs appears almost in any field dealing with observed (measured) real quantities (see the citation below). For aggregation of probability distributions Sklar designed his copulas as early as in 1959. But surprisingly, since that time only a very few literature have appeared dealing with possibility to aggregate several different pairwise dependencies into one multivariate copula. In the present paper this problem is tackled...
The knowledge of causal relations provides a possibility to perform predictions and helps to decide about the most reasonable actions aiming at the desired objectives. Although the causal reasoning appears to be natural for the human thinking, most of the traditional statistical methods fail to address this issue. One of the well-known methodologies correctly representing the relations of cause and effect is Pearl's causality approach. The paper brings an alternative, purely algebraic methodology...
Page 1