A discrete-time stochastic spatial model of plankton dynamics is given. We focus on aggregative behaviour of plankton cells. Our aim is to show the convergence of a microscopic, stochastic model to a macroscopic one, given by an evolution equation. Some numerical simulations are also presented.
We present two new models of the dynamics of phytoplankton aggregates. The first one is an individual-based model. Passing to infinity with the number of individuals, we obtain an Eulerian model. This model describes the evolution of the density of the spatial-mass distribution of aggregates. We show the existence and uniqueness of solutions of the evolution equation.
Download Results (CSV)