The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Convergence of sequences of iterates of random-valued vector functions

Rafał Kapica — 2003

Colloquium Mathematicae

Given a probability space (Ω,, P) and a closed subset X of a Banach lattice, we consider functions f: X × Ω → X and their iterates f : X × Ω X defined by f¹(x,ω) = f(x,ω₁), f n + 1 ( x , ω ) = f ( f ( x , ω ) , ω n + 1 ) , and obtain theorems on the convergence (a.s. and in L¹) of the sequence (fⁿ(x,·)).

Refinement type equations: sources and results

Rafał KapicaJanusz Morawiec — 2013

Banach Center Publications

It has been proved recently that the two-direction refinement equation of the form f ( x ) = n c n , 1 f ( k x - n ) + n c n , - 1 f ( - k x - n ) can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation f ( x ) = n c f ( k x - n ) , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation f ( x ) = c ( y ) f ( k x - y ) d y has also various interesting applications....

Page 1

Download Results (CSV)