The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we use the graphs as a tool to study nilpotent Lie algebras. It implies to set up a link betwcen graph theory and Lie theory. To do this, it is already known that every nilpotent Lie algebra of maximal rank is associated with a generalized Cartan matrix A and it ils isomorphic to a quotient of the positive part n+ of the KacMoody algebra g(A). Then, if A is affine, we can associate n+ with a directed graph (from now on, we use the term digraph) and we can also associate a subgraph...
Download Results (CSV)