Homogenization of periodic non self-adjoint problems with large drift and potential
We consider the homogenization of both the parabolic and eigenvalue problems for a singularly perturbed convection-diffusion equation in a periodic medium. All coefficients of the equation may vary both on the macroscopic scale and on the periodic microscopic scale. Denoting by the period, the potential or zero-order term is scaled as and the drift or first-order term is scaled as . Under a structural hypothesis on the first cell eigenvalue, which is assumed to admit a unique minimum in the...