Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On the size of approximately convex sets in normed spaces

S. DilworthRalph HowardJames Roberts — 2000

Studia Mathematica

Let X be a normed space. A set A ⊆ X is approximately convexif d(ta+(1-t)b,A)≤1 for all a,b ∈ A and t ∈ [0,1]. We prove that every n-dimensional normed space contains approximately convex sets A with ( A , C o ( A ) ) l o g 2 n - 1 and d i a m ( A ) C n ( l n n ) 2 , where ℋ denotes the Hausdorff distance. These estimates are reasonably sharp. For every D>0, we construct worst possible approximately convex sets in C[0,1] such that ℋ(A,Co(A))=(A)=D. Several results pertaining to the Hyers-Ulam stability theorem are also proved.

Page 1

Download Results (CSV)