Concept lattices associated with L-fuzzy W-contexts.
The L-Fuzzy concept theory that we have developed sets up classifications from the objects and attributes of a context through L-Fuzzy relations. This theory generalizes the formal concept theory of R. Wille. In this paper we begin with the L-Fuzzy concept definition that generalizes the definitions of the formal concept theory, and we study the lattice structure of the L-Fuzzy concept set, giving a constructive method for calculating this lattice. At the end, we apply this constructive method to...
In this work, we study the relation between the concept lattice of Wille ([5], [6]) and the L-Fuzzy concept lattice ([2]) developed by us. To do it, we have defined an application g that associates to each concept of Wille an L-Fuzzy concept. The main point of this work is to prove that if we are working with a crisp relation between an object set and an attribute set, the concept lattice of Wille is a sublattice of the L-Fuzzy concept lattice. At the end, we show a typical example in the formal...
First of all, in this paper we propose a family of fuzzy implication operators, which the generalised Lukasiewicz's one, and to analyse the impacts of Smets and Magrez properties on these operators. The result of this approach will be a characterisation of a proposed family of inclusion grade operators (in Bandler and Kohout's manner) that satisfies the axioms of Divyendu and Dogherty. Second, we propose a method to define fuzzy morphological operators (erosions and dilations). A family of fuzzy...
Fuzzy Mathematical Morphology aims to extend the binary morphological operators to grey-level images. In order to define the basic morphological operations fuzzy erosion, dilation, opening and closing, we introduce a general method based upon fuzzy implication and inclusion grade operators, including as particular case, other ones existing in related literature. In the definition of fuzzy erosion and dilation we use several fuzzy implications (Annexe A, Table of fuzzy implications), the paper includes...
In this paper, a new characterization for the interval-valued residuated fuzzy implication operators is presented, with which it is possible to use them in a simple and efficient way, since the calculation of the values of an intervalvalued implication applicated to two intervals is reduced to the study of a fuzzy implication applicated to the extremes of these intervals. This result is very important in order to extract knowledge from an L-fuzzy context with incomplete information. Finally, some...
The concepts of bounded subset, complete subset and directed subset, wich are well known in the context of partially ordered sets (X,≤), are extended in order to become appliable, with coherence, in fuzzy relational systems (X,R). The properties of these generalized structures are analyzed and operative exemples of them are presented.
The class of contrast intensification operators is formally defined and it's lattice structure studied. The effect of these operators in the referential classifications derived from special kinds of fuzzy relations is also determined. Results and examples are presented providing contrast intensification operators which keep quasi-uniformity structures generated by fuzzy relations while diminishing the fuzziness or the entropy of the relations.
Page 1