The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Local asymptotic normality for normal inverse gaussian Lévy processes with high-frequency sampling

Reiichiro KawaiHiroki Masuda — 2013

ESAIM: Probability and Statistics

We prove the local asymptotic normality for the full parameters of the normal inverse Gaussian Lévy process , when we observe high-frequency data , ,, with sampling mesh  → 0 and the terminal sampling time  → ∞. The rate of convergence turns out to be (√, √, √, √) for the dominating parameter (), where stands for the heaviness of the tails, the degree of skewness, the scale, and the location. The essential feature in our study is...

Page 1

Download Results (CSV)