One pile Nim with arbitrary move function. Holshouser, Arthur; Reiter, Harold — 2003 The Electronic Journal of Combinatorics [electronic only]
Dynamic single-pile Nim using multiple bases. Holshouser, Arthur; Reiter, Harold — 2006 The Electronic Journal of Combinatorics [electronic only]
Two pile move-size dynamic Nim. Holshouser, Arthur; Reiter, Harold — 2005 Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
A generalization of Beatty's theorem. Holshouser, Arthur; Reiter, Harold — 2001 Southwest Journal of Pure and Applied Mathematics [electronic only]
Dynamic one-pile blocking Nim. Flammenkamp, Achim; Holshouser, Arthur; Reiter, Harold — 2003 The Electronic Journal of Combinatorics [electronic only]
Pilesize dynamic one-pile Nim and Beatty's theorem. Holshouser, Arthur; Reiter, Harold; Rudzinski, James — 2004 Integers
Results and problems concerning compactifications, compact subtopologies, and mappings Sam Nadler; J. Quinn; Harold Reiter — 1975 Fundamenta Mathematicae