Curve cuspless reconstruction via sub-riemannian geometry
We consider the problem of minimizing ∫ 0 ℓ ξ 2 + K 2 ( s ) d s for a planar curve having fixed initial and final positions and directions. The total length is free. Here is the arclength parameter, () is the curvature of the curve and > 0 is a fixed constant. This problem comes from a model of geometry of vision due to Petitot, Citti and Sarti. We study existence of local and global minimizers for this problem. We prove that if for a certain choice of boundary conditions there is no...