In questo lavoro viene studiato il comportamento dinamico di una piastra vincolata monolateralmente su una fondazione elastica alla Winkler. Si presentano alcuni risultati numerici ottenuti mediante discretizzazione agli elementi finiti. Tali risultati mettono in luce l'influenza di alcuni fattori tipici come le funzioni di forma, il parametro di mesh e l'ampiezza dell'intervallo con cui si realizza l'integrazione nel tempo delle equazioni del moto. Si istituiscono infine dei confronti con risultati...
In questo lavoro viene analizzato il problema di equilibrio statico di una piastra rettangolare in contatto unilaterale e senza attrito con un mezzo elastico. Si esaminano i due modelli di fondazione alla Winkler e di semispazio elastico. Il problema viene risolto mediante discretizzazione agli elementi finiti utilizzando un approccio di tipo «penalty». La rapida convergenza del metodo e la sua efficienza sono dimostrate dagli esempi studiati, che riguardano sia piastre quadrate che rettangolari...
In questo lavoro viene studiato il comportamento dinamico di una piastra vincolata monolateralmente su una fondazione elastica alla Winkler. Si presentano alcuni risultati numerici ottenuti mediante discretizzazione agli elementi finiti. Tali risultati mettono in luce l'influenza di alcuni fattori tipici come le funzioni di forma, il parametro di mesh e l'ampiezza dell'intervallo con cui si realizza l'integrazione nel tempo delle equazioni del moto. Si istituiscono infine dei confronti con risultati...
In questo lavoro viene analizzato il problema di equilibrio statico di una piastra rettangolare in contatto unilaterale e senza attrito con un mezzo elastico. Si esaminano i due modelli di fondazione alla Winkler e di semispazio elastico. Il problema viene risolto mediante discretizzazione agli elementi finiti utilizzando un approccio di tipo «penalty». La rapida convergenza del metodo e la sua efficienza sono dimostrate dagli esempi studiati, che riguardano sia piastre quadrate che rettangolari...
Download Results (CSV)