The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
One of the important questions that remains after the classification of the finite simple groups is how to recognize a simple group via specific properties. For example, authors have been able to use graphs associated to element orders and to number of elements with specific orders to determine simple groups up to isomorphism. In this paper, we prove that Suzuki groups , where is a prime number can be uniquely determined by the order of group and the number of elements with the same order.
Let be a finite group, and let be the set of conjugacy class sizes of . By Thompson’s conjecture, if is a finite non-abelian simple group, is a finite group with a trivial center, and , then and are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation). In...
Download Results (CSV)