A standard result states the direct product of two connected bipartite graphs has exactly two components. Jha, Klavžar and Zmazek proved that if one of the factors admits an automorphism that interchanges partite sets, then the components are isomorphic. They conjectured the converse to be true. We prove the converse holds if the factors are square-free. Further, we present a matrix-theoretic conjecture that, if proved, would prove the general case of the converse; if refuted, it would produce a...
Formulas for vertex eccentricity and radius for the n-fold tensor product of n arbitrary simple graphs are derived. The center of G is characterized as the union of n+1 vertex sets of form V₁×V₂×...×Vₙ, with .
To every graph (or digraph) A, there is an associated automorphism group Aut(A). Frucht’s theorem asserts the converse association; that for any finite group G there is a graph (or digraph) A for which Aut(A) ∼= G. A new operation on digraphs was introduced recently as an aid in solving certain questions regarding cancellation over the direct product of digraphs. Given a digraph A, its factorial A! is certain digraph whose vertex set is the permutations of V (A). The arc set E(A!) forms a group,...
Given graphs A, B and C for which A×C ≅ B×C, it is not generally true that A ≅ B. However, it is known that A×C ≅ B×C implies A ≅ B provided that C is non-bipartite, or that there are homomorphisms from A and B to C. This note proves an additional cancellation property. We show that if B and C are bipartite, then A×C ≅ B×C implies A ≅ B if and only if no component of B admits an involution that interchanges its partite sets.
We investigate expressions of form A×C ≅ B×C involving direct products of digraphs. Lovász gave exact conditions on C for which it necessarily follows that A ≅ B. We are here concerned with a different aspect of cancellation. We describe exact conditions on A for which it necessarily follows that A ≅ B. In the process, we do the following: Given an arbitrary digraph A and a digraph C that admits a homomorphism onto an arc, we classify all digraphs B for which A×C ≅ B×C.
The proper connection number of a graph is the least integer k for which the graph has an edge coloring with k colors, with the property that any two vertices are joined by a properly colored path. We prove that given two connected non-bipartite graphs, one of which is (vertex) 2-connected, the proper connection number of their direct product is 2.
Download Results (CSV)