The strong version of the Poincaré recurrence theorem states that for any probability space , any -measure preserving transformation and any almost every point of returns to infinitely many times. In [8] (see also [4]) the theorem has been proved for MV-algebras of some type. The present paper contains a remarkable strengthening of the result stated in [8].
Independently with [7] a corresponding fuzzy approach has been developed in [3-5] with applications in measure theory. One of the results the Egoroff theorem has been proved in an abstract form. In [1] a necessary and sufficient condition for holding the Egoroff theorem was presented in the case of a space with a monotone measure. By the help of [2] and [6] we prove a variant of the Egoroff theorem stated in [4].
A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
Download Results (CSV)