The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 76

Showing per page

Order by Relevance | Title | Year of publication

A strengthening of the Poincaré recurrence theorem on MV-algebras

Riečan, Beloslav — 2012

Applications of Mathematics 2012

The strong version of the Poincaré recurrence theorem states that for any probability space ( Ω , 𝒮 , P ) , any P -measure preserving transformation T : Ω Ω and any A 𝒮 almost every point of A returns to A infinitely many times. In [8] (see also [4]) the theorem has been proved for MV-algebras of some type. The present paper contains a remarkable strengthening of the result stated in [8].

Fuzzy sets and small systems

Považan, JaroslavRiečan, Beloslav — 2013

Applications of Mathematics 2013

Independently with [7] a corresponding fuzzy approach has been developed in [3-5] with applications in measure theory. One of the results the Egoroff theorem has been proved in an abstract form. In [1] a necessary and sufficient condition for holding the Egoroff theorem was presented in the case of a space with a monotone measure. By the help of [2] and [6] we prove a variant of the Egoroff theorem stated in [4].

On the central limit theorem on IFS-events.

Jozefina PetrovicováRiecan Beloslav — 2005

Mathware and Soft Computing

A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.

Page 1 Next

Download Results (CSV)