Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Gelfand representation of Banach modules

PrefaceLet A be a commutative Banach algebra with maximal ideal space ∆ and let ^: A → C₀(∆) be the Gelfand representation of A. If M is a Banach module over A, then a bounded linear map φ: M → M₀, will be called a representation of M of Gelfund type if M₀ is a Banach module over C₀(∆) and φ is ^-linear in the sense that φ(ax) = âφ(x) for all a ∈ A and x ∈ M. Two such representations have been studied previously. In [50] and [51] Robbins describes such a representation in which M₀, is taken to be...

Page 1

Download Results (CSV)