Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Majorization of sequences, sharp vector Khinchin inequalities, and bisubharmonic functions

Albert Baernstein IIRobert C. Culverhouse — 2002

Studia Mathematica

Let X = i = 1 k a i U i , Y = i = 1 k b i U i , where the U i are independent random vectors, each uniformly distributed on the unit sphere in ℝⁿ, and a i , b i are real constants. We prove that if b ² i is majorized by a ² i in the sense of Hardy-Littlewood-Pólya, and if Φ: ℝⁿ → ℝ is continuous and bisubharmonic, then EΦ(X) ≤ EΦ(Y). Consequences include most of the known sharp L ² - L p Khinchin inequalities for sums of the form X. For radial Φ, bisubharmonicity is necessary as well as sufficient for the majorization inequality to always hold. Counterparts...

Page 1

Download Results (CSV)