The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The paper presents a new approach to fuzzy classification in the case of missing data. Rough-fuzzy sets are incorporated into logical type neuro-fuzzy structures and a rough-neuro-fuzzy classifier is derived. Theorems which allow determining the structure of the rough-neuro-fuzzy classifier are given. Several experiments illustrating the performance of the roughneuro-fuzzy classifier working in the case of missing features are described.
In this paper, application of an evolutionary strategy to positioning a GI/M/1/N-type finite-buffer queueing system with exhaustive service and a single vacation policy is presented. The examined object is modeled by a conditional joint transform of the first busy period, the first idle time and the number of packets completely served during the first busy period. A mathematical model is defined recursively by means of input distributions. In the paper, an analytical study and numerical experiments...
Download Results (CSV)