The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a dg algebra over and let be a dg -bimodule. We show that under certain technical hypotheses on , a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product and converges to the Hochschild homology of . We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers.
We show that the action of the mapping class group on bordered Floer homology in the second to extremal spin-structure is faithful. This paper is designed partly as an introduction to the subject, and much of it should be readable without a background in Floer homology.
Download Results (CSV)