The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Criticality of Switching Classes of Reversible 2-Structures Labeled by an Abelian Group

Houmem BelkhechinePierre IlleRobert E. Woodrow — 2017

Discussiones Mathematicae Graph Theory

Let V be a finite vertex set and let (, +) be a finite abelian group. An -labeled and reversible 2-structure defined on V is a function g : (V × V) (v, v) : v ∈ V → such that for distinct u, v ∈ V, g(u, v) = −g(v, u). The set of -labeled and reversible 2-structures defined on V is denoted by ℒ(V, ). Given g ∈ ℒ(V, ), a subset X of V is a clan of g if for any x, y ∈ X and v ∈ V X, g(x, v) = g(y, v). For example, ∅, V and v (for v ∈ V) are clans of g, called trivial. An element g of ℒ(V, ) is primitive...

Page 1

Download Results (CSV)