Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

The ℤ₂-graded sticky shuffle product Hopf algebra

Robin L. Hudson — 2006

Banach Center Publications

By abstracting the multiplication rule for ℤ₂-graded quantum stochastic integrals, we construct a ℤ₂-graded version of the Itô Hopf algebra, based on the space of tensors over a ℤ₂-graded associative algebra. Grouplike elements of the corresponding algebra of formal power series are characterised.

Quantum Bochner theorems and incompatible observables

Robin L. Hudson — 2010

Kybernetika

A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly...

Hall's transformation via quantum stochastic calculus

Paula CohenRobin HudsonK. ParthasarathySylvia Pulmannová — 1998

Banach Center Publications

It is well known that Hall's transformation factorizes into a composition of two isometric maps to and from a certain completion of the dual of the universal enveloping algebra of the Lie algebra of the initial Lie group. In this paper this fact will be demonstrated by exhibiting each of the maps in turn as the composition of two isometries. For the first map we use classical stochastic calculus, and in particular a stochastic analogue of the Dyson perturbation expansion. For the second map we make...

Page 1

Download Results (CSV)