Assuming ⋄, we construct a connected compact topological space K such that for every closed L ⊂ K the Banach space C(L) has few operators, in the sense that every operator on C(L) is multiplication by a continuous function plus a weakly compact operator. In particular, C(K) is indecomposable and has continuum many non-isomorphic indecomposable quotients, and K does not contain a homeomorphic copy of βℕ.
Moreover, assuming CH we construct a connected compact K where C(K) has few...
Using the method of forcing we construct a model for ZFC where CH does not hold and where there exists a connected compact topological space K of weight such that every operator on the Banach space of continuous functions on K is multiplication by a continuous function plus a weakly compact operator. In particular, the Banach space of continuous functions on K is indecomposable.
We construct, under Axiom ♢, a family of indecomposable Banach spaces with few operators such that every operator from into is weakly compact, for all ξ ≠ η. In particular, these spaces are pairwise essentially incomparable.
Assuming no additional set-theoretic axiom, we obtain this result with size instead of .
Download Results (CSV)