The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Little is known about the global topology of the Fatou set U(f) for holomorphic endomorphisms , when k >1. Classical theory describes U(f) as the complement in of the support of a dynamically defined closed positive (1,1) current. Given any closed positive (1,1) current S on , we give a definition of linking number between closed loops in and the current S. It has the property that if lk(γ,S) ≠ 0, then γ represents a non-trivial homology element in .
As an application, we use these linking...
Download Results (CSV)