The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Exponential and polynomial dichotomies of operator semigroups on Banach spaces

Roland Schnaubelt — 2006

Studia Mathematica

Let A generate a C₀-semigroup T(·) on a Banach space X such that the resolvent R(iτ,A) exists and is uniformly bounded for τ ∈ ℝ. We show that there exists a closed, possibly unbounded projection P on X commuting with T(t). Moreover, T(t)x decays exponentially as t → ∞ for x in the range of P and T(t)x exists and decays exponentially as t → -∞ for x in the kernel of P. The domain of P depends on the Fourier type of X. If R(iτ,A) is only polynomially bounded, one obtains a similar result with polynomial...

The domain of the Ornstein-Uhlenbeck operator on an L p -space with invariant measure

Giorgio MetafuneJan PrüssAbdelaziz RhandiRoland Schnaubelt — 2002

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We show that the domain of the Ornstein-Uhlenbeck operator on L p ( N , μ d x ) equals the weighted Sobolev space W 2 , p ( N , μ d x ) , where μ d x is the corresponding invariant measure. Our approach relies on the operator sum method, namely the commutative and the non commutative Dore-Venni theorems.

Page 1

Download Results (CSV)