Cohomology Groups of Infinite Dimensional Algebras.
In this article we study the interplay between algebro-geometric notions related to -points and structural features of the stable Auslander-Reiten quiver of a finite group scheme. We show that -points give rise to a number of new invariants of the AR-quiver on one hand, and exploit combinatorial properties of AR-components to obtain information on -points on the other. Special attention is given to components containing Carlson modules, constantly supported modules, and endo-trivial modules.
We classify the uniserial infinitesimal unipotent commutative groups of finite representation type over algebraically closed fields. As an application we provide detailed information on the structure of those infinitesimal groups whose distribution algebras have a representation-finite principal block.
Page 1