The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Set-theoretic constructions of two-point sets

Ben ChadRobin KnightRolf Suabedissen — 2009

Fundamenta Mathematicae

A two-point set is a subset of the plane which meets every line in exactly two points. By working in models of set theory other than ZFC, we demonstrate two new constructions of two-point sets. Our first construction shows that in ZFC + CH there exist two-point sets which are contained within the union of a countable collection of concentric circles. Our second construction shows that in certain models of ZF, we can show the existence of two-point sets without explicitly invoking the Axiom of Choice....

Uncountable ω-limit sets with isolated points

Chris GoodBrian E. RainesRolf Suabedissen — 2009

Fundamenta Mathematicae

We give two examples of tent maps with uncountable (as it happens, post-critical) ω-limit sets, which have isolated points, with interesting structures. Such ω-limit sets must be of the form C ∪ R, where C is a Cantor set and R is a scattered set. Firstly, it is known that there is a restriction on the topological structure of countable ω-limit sets for finite-to-one maps satisfying at least some weak form of expansivity. We show that this restriction does not hold if the ω-limit set is uncountable....

Page 1

Download Results (CSV)