The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We show that if A and B are finite sets of real numbers, then the number of triples (a,b,c) ∈ A × B × (A ∪ B) with a + b = 2c is at most (0.15+o(1))(|A|+|B|)² as |A| + |B| → ∞. As a corollary, if A is antisymmetric (that is, A ∩ (-A) = ∅), then there are at most (0.3+o(1))|A|² triples (a,b,c) with a,b,c ∈ A and a - b = 2c. In the general case where A is not necessarily antisymmetric, we show that the number of triples (a,b,c) with a,b,c ∈ A and a - b = 2c is at most (0.5+o(1))|A|². These estimates...
Download Results (CSV)