Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Nonlinear evolution equations with exponential nonlinearities: conditional symmetries and exact solutions

Roman ChernihaOleksii Pliukhin — 2011

Banach Center Publications

New Q-conditional symmetries for a class of reaction-diffusion-convection equations with exponential diffusivities are derived. It is shown that the known results for reaction-diffusion equations with exponential diffusivities follow as particular cases from those obtained here but not vice versa. The symmetries obtained are applied to construct exact solutions of the relevant nonlinear equations. An application of exact solutions to solving a boundary-value problem with constant Dirichlet conditions...

A mathematical model for fluid-glucose-albumin transport in peritoneal dialysis

Roman ChernihaJoanna Stachowska-PiętkaJacek Waniewski — 2014

International Journal of Applied Mathematics and Computer Science

A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a threecomponent nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Our aim is to model ultrafiltration of water combined with inflow of glucose to the tissue and removal of albumin from the body during dialysis, by finding the spatial distributions of glucose and albumin concentrations...

Page 1

Download Results (CSV)