The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Full domination in graphs

Robert C. BrighamGary ChartrandRonald D. DuttonPing Zhang — 2001

Discussiones Mathematicae Graph Theory

For each vertex v in a graph G, let there be associated a subgraph H v of G. The vertex v is said to dominate H v as well as dominate each vertex and edge of H v . A set S of vertices of G is called a full dominating set if every vertex of G is dominated by some vertex of S, as is every edge of G. The minimum cardinality of a full dominating set of G is its full domination number γ F H ( G ) . A full dominating set of G of cardinality γ F H ( G ) is called a γ F H -set of G. We study three types of full domination in graphs: full...

Resolving domination in graphs

Robert C. BrighamGary ChartrandRonald D. DuttonPing Zhang — 2003

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the (metric) representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolving set of minimum cardinality is called a minimum resolving set or a basis and the cardinality of a basis for G is its dimension dim G . A set S of vertices in G is a dominating set...

Page 1

Download Results (CSV)