The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We propose a new numerical scheme based on the finite volumes to simulate the
urethra flow based on hyperbolic balance law. Our approach is based on the Riemann
solver designed for the augmented quasilinear homogeneous formulation. The scheme has general semidiscrete wave–propagation form and can be extended to arbitrary high order accuracy. The first goal is to construct the scheme, which is well balanced, i.e. maintains not only some special steady states but all steady states which can occur....
Download Results (CSV)