Laslett’s transform for the Boolean model in
Consider a stationary Boolean model with convex grains in and let any exposed lower tangent point of be shifted towards the hyperplane by the length of the part of the segment between the point and its projection onto the covered by . The resulting point process in the halfspace (the Laslett’s transform of ) is known to be stationary Poisson and of the same intensity as the original Boolean model. This result was first formulated for the planar Boolean model (see N. Cressie [Cressie])...