The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We introduce a new class of Banach spaces, called generalized-lush spaces (GL-spaces for short), which contains almost-CL-spaces, separable lush spaces (in particular, separable C-rich subspaces of C(K)), and even the two-dimensional space with hexagonal norm. We find that the space C(K,E) of vector-valued continuous functions is a GL-space whenever E is, and show that the set of GL-spaces is stable under c₀-, l₁- and -sums. As an application, we prove that the Mazur-Ulam property holds for a larger...
We prove that a Schauder frame for any separable Banach space is shrinking if and only if it has an associated space with a shrinking basis, and that a Schauder frame for any separable Banach space is shrinking and boundedly complete if and only if it has a reflexive associated space. To obtain these results, we prove that the upper and lower estimate theorems for finite-dimensional decompositions of Banach spaces can be extended and modified to Schauder frames. We show as well that if a separable...
Download Results (CSV)