Controllability of the Benjamin-Bona-Mahony equation.
Let (X,∥·∥) and (Y,∥·∥) be two normed spaces and K be a convex cone in X. Let CC(Y) be the family of all non-empty convex compact subsets of Y. We consider the Nemytskiĭ operators, i.e. the composition operators defined by (Nu)(t) = H(t,u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space into (both are spaces of functions of bounded φ-variation in the sense of Riesz), and if it is globally Lipschitz, then it has to be of the form H(t,u(t)) = A(t)u(t)...
This article aims to explore the theory of unstable attractors with topological tools. A short topological analysis of the isolating blocks for unstable attractors with no external explosions leads quickly to sharp results about their shapes and some hints on how Conley's index is related to stability. Then the setting is specialized to the case of flows in ℝⁿ, where unstable attractors are seen to be dynamically complex since they must have external explosions.
Page 1