How the initialization affects the stability of the қ-means algorithm
We investigate the role of the initialization for the stability of the қ-means clustering algorithm. As opposed to other papers, we consider the actual қ-means algorithm (also known as Lloyd algorithm). In particular we leverage on the property that this algorithm can get stuck in local optima of the қ-means objective function. We are interested in the actual clustering, not only in the costs of the solution. We analyze when different initializations lead to the same local optimum, and when they...